王应前

时间:2016-07-14浏览:1设置

王应前:男,1954年元月出生,博士,教授。公开发表学术论文30余篇,SCI检索20余篇。

学习与工作简历:
2005.12月至今   浙江师范大学   教授 
1998.9至2001.7   上海交通大学    博士 
1982.9至1985.7   安徽大学     硕士 
1978.2至1982.1    安徽大学     学士 

主要研究领域: 图的连通性,染色,分解等。

在研的科研项目有:

(1) 《可平面图的3染色和全染色》,浙江省自然科学基金,编号Y6090699;
     资助金额:5万元;起止年月:2010.1-2011.12;主持人:王应前

已完成的科研项目有:

(1) 《可平面图的3可选择性研究与应用》, 浙江省教育厅自然科学基金重点项目,编号20070441;
     资助金额: 5万元;起止年月:2008.1-2009.12;主持人:王应前

发表的主要学术论文:

In 2004

[1] Y. Wang,  Super restricted edge-connectivity of vertex-transitive graphs, Discrete  Math., 289 (2004) 199-205.

In 2005

[2] Y. Wang,  Q. Li, Upper bound of the third edge-connectivity of graphs, Science in China Ser. A Mathematics, 48 (2005) 360-371.

In 2006

[3] Y. Wang,  Optimization problems of the third edge-connectivity of graphs, Science in China Ser.A Mathematics, 49 (2006) 791-799.

In 2007

[4] Ying-qian WANG, Min-le SHANGGUAN & Qiao LI, On total chromatic number of planar graphs without 4-cycles, Science in China series A: Mathematics, 50 (2007) 81-86.

[5] Liang Shen, Yingqian Wang, A sufficient condition for a planar graph to be 3-choosable, Inform. Process. Lett., 104 (2007) 146-151.

In 2008

[6] Yongzhu Chen, Yingqian Wang, On the diameter of generalized Kneser graphs, Discrete Math., 308 (2008) 4276-4279.

[7] Yingqian Wang, Ming Chen, Liang Shen, Plane graphs without cycles of length 4, 6, 7 or 8 are 3-colorable, Discrete Math., 308 (2008) 4014-4017.

[8] Yingqian Wang, Huajing Lu, Ming Chen, A note on 3-choosability of planar graphs. Inform. Process. Lett., 105 (2008) 206-211.

[9] M.Montassier, A. Raspaud, W.Wang, Y. Wang, A relaxation of Havel’s 3-color problem, Information Processing Letters, 107 (2008) 107-109 .

In 2009

[10] SHEN Lan, WANG YingQian, Total colorings of planar graphs with maximum degree at least 8, Science in China series A: Mathematics, 52 (2009) 1733-1742.

[11] Huajing Lu, Yingqian Wang, Weifan Wang et al., On the 3-colorability of planar graphs without 4-, 7- and 9-cycles, Discrete Math., 309 (2009) 4596-4607.

[12] Dingzhu Du, Lan Shen, Yingqian Wang, Planar graphs with maximum degree 8 and without adjacent triangles are 9-totally-colorable, Discrete Applied Mathematice, 157 (2009) 2778-2784.

[13] Lan Shen, Yingqian Wang, Weifan Wang, Ko-Wei Lih, On the 9-total colorability of planar graphs with maximum degree 8 and without intersecting triangles, Applied Mathematics Letters, 22 (2009) 1369-1373.

[14] Lan Shen, Yingqian Wang, On the 7 Total Colorability of Planar Graphs with Maximum Degree 6 and without 4-cycles, Graphs and Combinatorics, 25 (2009) 401-407.

In 2010

[15] Yingqian Wang, Huajing Lu, Ming Chen, Planar graphs without cycles of length 4,  5, 8, or 9 are 3-choosable, Discrete Math., 310 (2010) 147-158.

[16] Jingwen Zhang, Yingqian Wang, Delta-total-colorability of plane graphs with maximum degree  at least 6 and without adjacent short cycles, Inform. Process. Lett., 110 (2010) 830-834.

[17] Lan Shen, Yingqian Wang, Planar graphs with maximum degree 7 and without 5-cycles are 8-totally-colorable, Discrete Math., 310 (2010) 321-324.

[18] WANG YingQian, MAO XiangHua, Lu HuaJing & Wang WeiFan, On 3-colorability of planar graphs without adjacent short cycles, Science China Mathematics, 53 (2010) 1129-1132.

In 2011

[19] Yingqian Wang, Qian Wu, Liang Shen, Planar graphs without cycles of length 4, 7, 8 or 9 are 3-choosable, Discrete Applied Math. 159 (2011) 232-239.

[20] Yingqian Wang, Qijun Zhang, Decomposing a planar graph with girth at least 8 into a forest and a matching, Discrete Math., 2011, 844-849. 

[21] Huiyu Sheng, Yingqian Wang, A structural theorem of planar graphs with some applications, Discrete appl. Math. 2011, doi:10.1016/j.dam.2011.03.005. 

[22] WANG YingQian, ZHANG Qijun , On 3-choosability of triangle-free plane graphs,  Sci China Math, 2011, 54, doi:10.1007/s11425-o11-4191-z. 

[23] 王应前,孙强,陶鑫,沈岚,最大度为7且不含带弦5-圈的平面图是8-全可染的,中国科学:数学,2011年 第41卷 第1期:95-104.(一级)

浙江师范大学离散数学研究中心版权所有 © 2018-2028
地址:浙江省金华市迎宾大道688号21幢 邮政编码:321004
联系电话:0579-82282629   电子邮箱:jcsx@zjnu.cn    管理登陆