王应前:男,1954年元月出生,博士,教授。公开发表学术论文30余篇,SCI检索20余篇。
学习与工作简历:
2005.12月至今 浙江师范大学 教授
1998.9至2001.7 上海交通大学 博士
1982.9至1985.7 安徽大学 硕士
1978.2至1982.1 安徽大学 学士
主要研究领域: 图的连通性,染色,分解等。
在研的科研项目有:
(1) 《可平面图的3染色和全染色》,浙江省自然科学基金,编号Y6090699;
资助金额:5万元;起止年月:2010.1-2011.12;主持人:王应前
已完成的科研项目有:
(1) 《可平面图的3可选择性研究与应用》, 浙江省教育厅自然科学基金重点项目,编号20070441;
资助金额: 5万元;起止年月:2008.1-2009.12;主持人:王应前
发表的主要学术论文:
In 2004
[1] Y. Wang, Super restricted edge-connectivity of vertex-transitive graphs, Discrete Math., 289 (2004) 199-205.
In 2005
[2] Y. Wang, Q. Li, Upper bound of the third edge-connectivity of graphs, Science in China Ser. A Mathematics, 48 (2005) 360-371.
In 2006
[3] Y. Wang, Optimization problems of the third edge-connectivity of graphs, Science in China Ser.A Mathematics, 49 (2006) 791-799.
In 2007
[4] Ying-qian WANG, Min-le SHANGGUAN & Qiao LI, On total chromatic number of planar graphs without 4-cycles, Science in China series A: Mathematics, 50 (2007) 81-86.
[5] Liang Shen, Yingqian Wang, A sufficient condition for a planar graph to be 3-choosable, Inform. Process. Lett., 104 (2007) 146-151.
In 2008
[6] Yongzhu Chen, Yingqian Wang, On the diameter of generalized Kneser graphs, Discrete Math., 308 (2008) 4276-4279.
[7] Yingqian Wang, Ming Chen, Liang Shen, Plane graphs without cycles of length 4, 6, 7 or 8 are 3-colorable, Discrete Math., 308 (2008) 4014-4017.
[8] Yingqian Wang, Huajing Lu, Ming Chen, A note on 3-choosability of planar graphs. Inform. Process. Lett., 105 (2008) 206-211.
[9] M.Montassier, A. Raspaud, W.Wang, Y. Wang, A relaxation of Havel’s 3-color problem, Information Processing Letters, 107 (2008) 107-109 .
In 2009
[10] SHEN Lan, WANG YingQian, Total colorings of planar graphs with maximum degree at least 8, Science in China series A: Mathematics, 52 (2009) 1733-1742.
[11] Huajing Lu, Yingqian Wang, Weifan Wang et al., On the 3-colorability of planar graphs without 4-, 7- and 9-cycles, Discrete Math., 309 (2009) 4596-4607.
[12] Dingzhu Du, Lan Shen, Yingqian Wang, Planar graphs with maximum degree 8 and without adjacent triangles are 9-totally-colorable, Discrete Applied Mathematice, 157 (2009) 2778-2784.
[13] Lan Shen, Yingqian Wang, Weifan Wang, Ko-Wei Lih, On the 9-total colorability of planar graphs with maximum degree 8 and without intersecting triangles, Applied Mathematics Letters, 22 (2009) 1369-1373.
[14] Lan Shen, Yingqian Wang, On the 7 Total Colorability of Planar Graphs with Maximum Degree 6 and without 4-cycles, Graphs and Combinatorics, 25 (2009) 401-407.
In 2010
[15] Yingqian Wang, Huajing Lu, Ming Chen, Planar graphs without cycles of length 4, 5, 8, or 9 are 3-choosable, Discrete Math., 310 (2010) 147-158.
[16] Jingwen Zhang, Yingqian Wang, Delta-total-colorability of plane graphs with maximum degree at least 6 and without adjacent short cycles, Inform. Process. Lett., 110 (2010) 830-834.
[17] Lan Shen, Yingqian Wang, Planar graphs with maximum degree 7 and without 5-cycles are 8-totally-colorable, Discrete Math., 310 (2010) 321-324.
[18] WANG YingQian, MAO XiangHua, Lu HuaJing & Wang WeiFan, On 3-colorability of planar graphs without adjacent short cycles, Science China Mathematics, 53 (2010) 1129-1132.
In 2011
[19] Yingqian Wang, Qian Wu, Liang Shen, Planar graphs without cycles of length 4, 7, 8 or 9 are 3-choosable, Discrete Applied Math. 159 (2011) 232-239.
[20] Yingqian Wang, Qijun Zhang, Decomposing a planar graph with girth at least 8 into a forest and a matching, Discrete Math., 2011, 844-849.
[21] Huiyu Sheng, Yingqian Wang, A structural theorem of planar graphs with some applications, Discrete appl. Math. 2011, doi:10.1016/j.dam.2011.03.005.
[22] WANG YingQian, ZHANG Qijun , On 3-choosability of triangle-free plane graphs, Sci China Math, 2011, 54, doi:10.1007/s11425-o11-4191-z.
[23] 王应前,孙强,陶鑫,沈岚,最大度为7且不含带弦5-圈的平面图是8-全可染的,中国科学:数学,2011年 第41卷 第1期:95-104.(一级)