杭州师范大学 郭军伟教授、杭州师范大学 曹健教授、温州大学 刘纪彩教授 学术报告

时间:2024-09-11浏览:10设置

报告题目1:A new family of $q$-hypergeometric congruences from Andrews' multi-series transformation

报告人郭军伟教授,杭州师范大学

报告时间:2024年9月13日(周五)9:00-12:00

报告地点20-306

报告摘要:We deduce a new family of $q$-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial from George Andrews' multi-series extension of the Watson transformation. A Karlsson--Minton type summation for very-well-poised basic hypergeometric series due to George Gasper also plays an important role in our proof. We put forward two relevant conjectures on supercongruences and $q$-supercongruences for further study.

报告人简介:郭军伟,1977年出生于浙江东阳,南开大学博士,法国里昂第一大学博士后。杭州师范大学教授、薛定谔国际数学物理研究所访问学者,曾任华东师范大学数学系教授,博士生导师。主要从事组合数学、q-级数和数论的研究,共发表SCI论文150余篇。他利用单位根来证明q-同余式的创新方法,在国际权威期刊《Advances in Mathematics》上发表。先后主持三项国家自然科学基金,以及上海市教育发展基金会晨光计划、上海市科委青年科技启明星计划、江苏省自然科学基金等项目,并入选江苏省教育厅“青蓝工程”中青年学术带头人等。


报告题目2:Expansions of q-operational equations and applications to the q-Hardy-Hille type formulas and the generalized Askey--Wilson polynomials

报告人曹健教授,杭州师范大学

报告时间:2024年9月13日(周五)9:00-12:00

报告地点20-306

报告摘要:The mission of this talk is to find two general q-operational equations together with the expansion issue of the bivariate q-Laguerre polynomials from the perspective of q-partial differential equations. We also give some applications including some q-Hardy--Hille type formulas and the generalized Askey--Wilson polynomials. In addition, we present the Rogers-type formulas and the U(n+1)-type generating functions for the bivariate q-Laguerre polynomials by the technique based upon q-operational equations. Moreover, we derive a new generalized Andrews--Askey integral and a new transformation identity involving the bivariate q-Laguerre polynomials by applying q-operational equations. Finally, we find q-operational equations and q-partial differential equations for the generalized Askey--Wilson polynomials and give some applications.

报告人简介:曹健,杭州师范大学教授,硕士生导师,从事组合数学与特殊函数领域的研究,主持国家及浙江省基金等多项,已在《Fractional Calculus and Applied Analysis》、《Studies in Applied Mathematics》、《Advances in Applied Mathematics》等国际重要期刊发表论文40余篇,入选杭州市属高校中青年学术带头人、杭州市“131”人才等,多次在全国组合数学与图论、海峡两岸图论与组合数学、英国肯特大学及伦敦大学学院等国内外学术会议上作报告。

  

报告题目3:A combinatorial approach to Berkovich type identities

报告人刘纪彩教授,温州大学

报告时间:2024年9月13日(周五)9:00-12:00

报告地点20-306

报告摘要:Recently, Berkovich established nine $q$-binomial identities involving the Legendre symbol $(\frac{d}{3})$. In this talk, we investigate Berkovich type identities and establish a unified form of $q$-binomial identities of this type through a combinatorial approach. This unified form includes Berkovich's nine identities as special cases. Many new such identities can be also deduced from this unified form.

报告人简介:刘纪彩,温州大学瓯江特聘教授,硕士生导师。主要从事组合数学与数论研究,迄今在《Proc. Amer. Math. Soc.》、《Advances in Applied Mathematics》、《Journal of Number Theory》等期刊上发表学术论文50余篇,主持国家自然科学基金青年项目与面上项目各一项。


浙江师范大学离散数学研究中心版权所有 © 2018-2028
地址:浙江省金华市迎宾大道688号21幢 邮政编码:321004
联系电话:0579-82282629   电子邮箱:jcsx@zjnu.cn    管理登陆