韩国建国大学 Seog-Jin Kim教授 学术报告

时间:2025-04-08浏览:10设置

报告题目:List coloring of the square of subcubic planar graphs

报告人:Seog-Jin Kim,韩国建国大学

报告时间:2025年4月10日(周四)15:00-16:00

报告地点:21-417

报告摘要:The square of a graph G, denoted G^2, has the same vertex set as G and has an edge between two vertices if the distance between them in G is at most 2.  Thomassen (2018) proved that \chi(G^2) \leq 7 if G is a subcubic planar graph.  A natural question is whether \chi_{\ell}(G^2) \leq 7 or not if G is a subcubic planar graph. Cranston and Kim (2008) showed that \chi_{\ell}(G^2) \leq 7 if G$ is a subcubic planar graph of girth at least 7. Recently, Kim and Lian (2024) proved that  \chi_{\ell}(G^2) \leq 7 if G is a subcubic planar graph of girth at least 6.  In this talk, we will explain the idea of the proofs of Kim and Lian's result and introduce problems which are related with this topic. This talk is based joint work with Xiaopan Lian (Nankai University)

报告人简介:Seog-Jin Kim,韩国建国大学(Konkuk Univeristy)教授,2003年获美国伊利诺伊大学香槟分校博士学位,导师为Douglas Brent West,主要研究领域是图的染色和图的结构。他在J. Combin. Theory Ser. B,J. Graph Theory,Electron. J. Combin. 等杂志发表论文40余篇。

邀请人:朱绪鼎


浙江师范大学离散数学研究中心版权所有 © 2018-2028
地址:浙江省金华市迎宾大道688号21幢 邮政编码:321004
联系电话:0579-82282629   电子邮箱:jcsx@zjnu.cn    管理登陆